4.5 Article

Finite element analysis in a fiber-reinforced cylinder due to memory-dependent heat transfer

期刊

ACTA MECHANICA
卷 230, 期 5, 页码 1607-1624

出版社

SPRINGER WIEN
DOI: 10.1007/s00707-018-2357-2

关键词

-

向作者/读者索取更多资源

Enlightened by the Caputo fractional derivative, the present study treats with a novel mathematical model of generalized thermoelasticity to investigate the transient phenomena for a fiber-reinforced hollow cylinder due to the influence of thermal shock and magnetic field in the context of a three-phase-lag model of generalized thermoelasticity, which is defined in an integral form of a common derivative on a slipping interval by incorporating the memory-dependent heat transfer. Employing Laplace transform as a tool, the problem has been transformed to the space domain, where the Galerkin finite element technique is incorporated to solve the resulting equations in the transformed domain. The inversion of the Laplace transform is carried out numerically on applying a method of Bellman et al. According to the graphical representations corresponding to the numerical results, conclusions about the new theory are constructed. Excellent predictive capability is demonstrated due to the presence of reinforcement, memory-dependent derivative, and magnetic field also.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据