4.8 Article

Tensile behavior and structural characterization of pig dermis

期刊

ACTA BIOMATERIALIA
卷 86, 期 -, 页码 77-95

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2019.01.023

关键词

Skin; Collagen; Stress relaxation; TEM; Pig; Mechanical properties

资金

  1. Multi-University Research Initiative from the Air Force Office of Scientific Research [AFOSR-FA9550-15-1-0009]
  2. University of California, Berkeley
  3. Royal British Legion
  4. AWE
  5. Imperial College London
  6. Isaac Newton Trust
  7. Global Alliance at the University of Cambridge
  8. European Office of Aerospace Research and Development [AFOSR-FA9550-17-1-0214]
  9. NIH

向作者/读者索取更多资源

Skin, the outermost layer of the body, fulfills a broad range of functions, protecting internal organs from damage and infection, while regulating the body's temperature and water content via the exchange of heat and fluids. It must be able to withstand and recover from extensive deformation and damage that can occur during growth, movement, and potential injuries. A detailed investigation of the evolution of the collagen architecture of the dermis as a function of deformation is conducted, which reveals new aspects that help us to understand the mechanical response of skin. Juvenile pig is used as a model material because of its similarity to human skin. The dermis is found to have a tridimensional woven structure of collagen fibers, which evolves with deformation. After failure, we observe that the fibers have straightened and aligned in the direction of tension. The effects of strain-rate change, cyclic loading, stress relaxation, and orientation are quantitatively established. Digital image correlation techniques are implemented to quantify skin's anisotropy; measurements of the Poisson ratio are reported. This is coupled with transmission electron microscopy which enables obtaining quantitative strain parameters evaluated through the orientation and curvature of the collagen fibers and their changes, for the first time in all three dimensions of the tissue. A model experiment using braided human hair in tension exhibits a similar J-curve response to skin, and we propose that this fiber configuration is at least partially responsible for the monotonic increase of the tangent modulus of skin with strain. The obtained results are intended to serve as a basis for structurally-based models of skin. Statement of Significance Our study reveals a new aspect of the dermis: it is comprised of a tridimensional woven structure of collagen fibers, which evolves with deformation. This is enabled by primarily two techniques, transmission electron microscopy on three perpendicular planes and confocal images with second harmonic generation fluorescence of collagen, captured at different intervals of depth. After failure, the fibers have straightened and aligned in the direction of tension. Digital image correlation techniques are implemented to quantify skin's anisotropy; measurements of the Poisson ratio are reported. A model experiment using braided human hair in tension exhibits a similar J-curve response to skin, and we propose that this fiber configuration is at least partially responsible for the monotonic increase of the tangent modulus of skin with strain. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据