4.8 Article

Doxorubicin-polyglycerol-nanodiamond composites stimulate glioblastoma cell immunogenicity through activation of autophagy

期刊

ACTA BIOMATERIALIA
卷 86, 期 -, 页码 381-394

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2019.01.020

关键词

Nanodiamond; Doxorubicin; Glioblastoma; Immunogenicity; Autophagy

资金

  1. National Natural Science Foundation of China [81671818]
  2. Hubei Province health and family planning scientific research project [WJ2019Z010]
  3. Science and Technology Program of Wuhan, China [2017060201010148]
  4. Wuhan University Innovation Project [2042016kf0151]
  5. Natural Science Foundation of Jiangsu Province [BK20160329]
  6. Natural Science Foundation of China [31600805]

向作者/读者索取更多资源

Immunosuppression is a salient feature of GBM associated with the disease's grim prognosis and the limited success of anti-GBM immunotherapy. Stimulating immunogenicity of the GBM cells (GC) is a promising approach to subverting the GBM-associated immunosuppression. We had previously devised a drug composite based on polyglycerol-functionalized nanodiamonds bearing doxorubicin (Nano-DOX) and demonstrated that Nano-DOX effectively modulated GBM's immunosuppressive microenvironment through stimulating the immunogenicity of GC and initiated anti-GBM immune responses. The present study now explored the mechanism of Nano-DOX's immunostimulatory action. Nano-DOX was found to induce autophagy rather than apoptosis in GC and stimulated GC to emit antigens and damage associated molecular patterns (DAMPs) that are potent adjuvants, which resulted in enhanced activation of dendritic cells (DC). Heightened autophagosome release was observed in Nano-DOX-treated GC but was shown not to be a major channel of antigen donation. Blocking autophagy in GC not only reduced Nano-DOX-stimulated GC antigen donation and DAMPs emission, but also efficiently attenuated DC activation stimulated by Nano-DOX-treated GC. Taken together, these findings suggest that activation of autophagy is a central mechanism whereby Nano-DOX stimulates GC's immunogenicity. Our work provides new insight on how nanotechnology can be applied to therapeutically modulate the GBM immune microenvironment by harnessing autophagy in the cancer cells. Statement of Significance Immunosuppression is a salient feature of GBM associated with the grim prognosis of the disease and the limited success of anti-GBM immunotherapy. We demonstrated that Doxorubicin-polyglycerol-nanodia mond composites could activate autophagy in GBM cells and thereby stimulate the immunogenecity of GBM cells. This discovery 1, sheds new light on how nanotechnology could be applied to therapeutically modulate the tumor immune microenvironment, and 2, provides a powerful tool for subverting the GBM's immunosuppressive microenvironment, which has great therapeutic potential for the treatment of GBM. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据