4.8 Article

Anodized Aluminum with Nanoholes Impregnated with Quaternary Ammonium Compounds Can Kill Pathogenic Bacteria within Seconds of Contact

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 48, 页码 41207-41214

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b17634

关键词

antibacterial surface; nosocomial infection; antimicrobial; impregnation; quaternary ammonium compounds

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Canada Foundation for Innovation
  3. Canada Research Chairs program
  4. McGill Engineering Doctoral Award
  5. EUL Scholar program

向作者/读者索取更多资源

Bacterial contamination of surfaces results in the spread of pathogens in public spaces such as hospitals and public transport. The development of antibacterial surfaces that rapidly kill bacteria is therefore highly desirable. Here, we investigate the antibacterial efficacy of a novel anodized aluminum surface featuring nanoholes impregnated with quaternary ammonium compounds, referred to as A3S. The antimicrobial activity of A3S was assessed using both Gram-positive and Gram-negative bacteria in a novel assay which simulates pathogen transfer from a contaminated finger to a clean finger in a real-world scenario. Enumeration of colony-forming units shows that the number of viable bacteria on the second finger contacting A3S is significantly reduced compared to a control surface. Furthermore, bacterial contact with the A3S material results in compromised cell membranes in less than 1 min, and a kill zone assay shows that an exposure time as short as 5 s is sufficient to kill pathogenic bacteria. The rapid antimicrobial action of A3S was particularly evident against Gram-positive bacteria, that account for more than 70% of nosocomial infections. Taken together, these findings demonstrate that A3S is a promising candidate for the fabrication of antibacterial surfaces that can be used in a wide range of clinical and commercial applications to stop the spread of harmful bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据