4.8 Article

Ultrasmall All-In-One Nanodots Formed via Carbon Dot-Mediated and Albumin-Based Synthesis: Multimodal Imaging-Guided and Mild Laser-Enhanced Cancer Therapy

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 49, 页码 42077-42087

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b16065

关键词

protein-based nanomedicines; light-controllable drug delivery and release; nucleus-targeted phototherapy; carbon quantum dot; multimodal imaging; bovine serum albumin (BSA)

资金

  1. National Natural Science Foundation of China [21673037]

向作者/读者索取更多资源

Integration of multiple diagnostic/therapeutic modalities into a single system with ultrasmall size, excellent photothermal/photodynamic properties, high cellular uptake efficiency, nuclear delivery capacity, rapid renal clearance, and good biosafety is highly desirable for cancer theranostics, but still remains challenging. Here, a novel type of multifunctional nanodots (denoted as BCCGH) was synthesized by mixing bovine serum albumin, carbon dots, and metal ions (Cu2+ and Gd3+), followed by the conjugation with a photosensitizer (HPPH). The nanodots hold great promise for fluorescence/photoacoustic/magnetic resonance/photothermal imaging guided synergistic photothermal/photodynamic therapy (PDT) because of their appealing properties such as high photothermal conversion efficiency (68.4%), high longitudinal relaxivity (11.84 mM(-1) s(-1), 7T), and superior colloidal stability with negligible Gd3+ release. Benefiting from the massive cellular uptake, endoplasmic reticulum/mitochondrion-targeting ability, and mild near-infrared laser irradiation-promoted nuclear delivery of BCCGH, a high anticancer therapeutic efficiency is achieved in the subsequent in vitro PDT. Besides, as revealed by the in vivo/ex vivo results, the nanodots also exhibit excellent tumor accumulation, efficient renal clearance, complete tumor ablation, and exceptional biosafety. To summarize, this work develops a carbon dot-mediated and albumin-based synthetic approach for constructing ultrasmall and multifunctional nanodots, which may hold great potential for cancer theranostics and beyond.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据