4.8 Article

High-Performance Flexible In-Plane Micro-Supercapacitors Based on Vertically Aligned CuSe@Ni(OH)(2) Hybrid Nanosheet Films

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 44, 页码 38341-38349

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b12543

关键词

in-plane micro-supercapacitors; vertically aligned hybrid nanostructures; CuSe nanosheets; Ni(OH)(2) nanosheets; flexibility

资金

  1. National Natural Science Foundation of China [21671106, 21671170, 21541007]
  2. Fundamental Research Funds for the Central Universities [2018B19714]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions
  4. State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Solid State Microstructures, Nanjing University

向作者/读者索取更多资源

The orientation and hybridization of ultrathin two-dimensional (2D) nanostructures on interdigital electrodes is vital for developing high-performance flexible in-plane micro-supercapacitors (MSCs). Despite great progress has been achieved, integrating CuSe and Ni(OH)(2) nanosheets to generate advanced nanohybrids with oriented arrangement of each component and formation of porous frameworks remains a challenge, and their application for in-plane MSCs has not been explored. Herein, the vertically aligned CuSe@Ni(OH)(2) hybrid nanosheet films with hierarchical open channels are skillfully deposited on Au interdigital electrodes/polyethylene terephthalate substrate via a template-free sequential electrodeposition approach, and directly employed to construct in-plane MSCs by choosing polyvinyl alcohol-LiCl gel as both the separator and the solid electrolyte. Because of the unique geometrical structure and combination of intrinsically conductive CuSe and battery-type Ni(OH)(2) components, such hybrid nanosheet films can not only resolve the poor conductivity and re stacking problems of Ni(OH)(2) nanosheets but also create the 3D electrons or ions transport pathway. Thus, the in-plane MSCs device fabricated by such hybrid nanosheet films exhibits high volumetric specific capacitance (38.9 F cm(-3)). Moreover, its maximal energy and power density can reach 5.4 mW h cm(-3) and 833.2 mW cm(-3), superior to pure CuSe nanosheets, and most of reported carbon materials and metal hydroxides/oxides/sulfides based in-plane MSCs ones. Also, the hybrid nanosheet films device shows excellent cycling performance, good flexibility, and mechanical stability. This work may shed some light on optimizing 2D electrode materials and promote the development of flexible in-plane MSCs or other energy storage systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据