4.8 Article

Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 44, 页码 37820-37828

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b13166

关键词

bioprinting nanocomposite; electrostatic interactions; printing fidelity; silica nanoparticle

资金

  1. CABMM
  2. Swiss National Science Foundation [CRSII5_173868]
  3. Swiss National Science Foundation (SNF) [CRSII5_173868] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Three-dimensional (3D) bioprinting allows the fabrication of 3D structures containing living cells whose 3D shape and architecture are matched to a patient. The feature is desirable to achieve personalized treatment of trauma or diseases. However, realization of this promising technique in the clinic is greatly hindered by inferior mechanical properties of most biocompatible bioink materials. Here, we report a novel strategy to achieve printing large constructs with high printing quality and fidelity using an extrusion-based printer. We incorporate cationic nanoparticles in an anionic polymer mixture, which significantly improves mechanical properties, printability, and printing fidelity of the polymeric bioink due to electrostatic interactions between the nanoparticles and polymers. Addition of cationic-modified silica nanoparticles to an anionic polymer mixture composed of alginate and gellan gum results in significantly increased zero-shear viscosity (1062%) as well as storage modulus (486%). As a result, it is possible to print a large (centimeter-scale) porous structure with high printing quality, whereas the use of the polymeric ink without the nanoparticles leads to collapse of the printed structure during printing. We demonstrate such a mechanical enhancement is achieved by adding nanoparticles within a certain size range (<100 nm) and depends on concentration and surface chemistry of the nanoparticles as well as the length of polymers. Furthermore, shrinkage and swelling of the printed constructs during cross-linking are significantly suppressed by addition of nanoparticles compared with the ink without nanopartides, which leads to high printing fidelity after cross-linking. The incorporated nanoparticles do not compromise biocompatibility of the polymeric ink, where high cell viability (>90%) and extracellular matrix secretion are observed for cells printed with nanocomposite inks. The design principle demonstrated can be applied for various anionic polymer-based systems, which could lead to achievement of 3D bioprinting-based personalized treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据