4.8 Article

Planar Benzofuran Inside-Fused Perylenediimide Dimers for High VOC Fullerene-Free Organic Solar Cells

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 4, 页码 4203-4210

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b19563

关键词

perylenediimide; benzofuran; planar; high V-OC; fullerene-free solar cell

资金

  1. National Key Research and Development Program of China [2017YFA0206600]
  2. Key Research Program of Frontier Sciences, Chinese Academy of Sciences [QYZDB-SSW-SLH033]
  3. National Natural Science Foundation of China (NSFC) [51473040, 51673048, 21875052, 21602040, 21504019, 51773046, 51873044]

向作者/读者索取更多资源

Bulk heterojunction organic solar cells based on perylenediimide (PDI) derivatives as electron acceptors have afforded high power conversion efficiency (PCE) but still lagged behind fullerene-based analogues. Design of novel molecular structures by adjusting the PDI ring and/or connection mode remains the breakthrough point to improve the photovoltaic performance. After introducing benzofuran at the inside bay positions and being linked with a single bond and a fluorene unit, mandatory planar PDI dimers were achieved and named FDI2 and F-FDI2. Both acceptors show high-lying LUMO energy levels and realize high V-OC beyond 1.0 V when using the classic polymer of PBDB-T as an electron donor. However, FDI2 and F-FDI2 gave totally different photovoltaic performance with PCEs of 0.15 and 6.33%, respectively. The central fluorene linkage increased the miscibility of materials and ensured a much higher short-circuit current because of the formation of suitable phase separation. Our results demonstrated that utilizing the mandatory planar skeleton of PDI dimers is a simple and effective strategy to achieve high-performance nonfullerene electron acceptors, and the modulation of central conjugated units is also vital.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据