4.8 Article

Na+-Conductive Na2Ti3O7-Modified P2-type Na2/3Ni1/3Mn2/3O2 via a Smart in Situ Coating Approach: Suppressing Na+/Vacancy Ordering and P2-O2 Phase Transition

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 1, 页码 856-864

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b17976

关键词

sodium-ion batteries; cathode material; Na+ conductor-Na2Ti3O7; in situ coating approach; phase transition; Na+/vacancy ordering

资金

  1. Beijing Nova Program [Z141103001814065]
  2. Youth Innovation Promotion Association CAS [2016152]
  3. Scientific Instrument Developing Project of the Chinese Academy of Sciences [ZDKYYQ20170001]

向作者/读者索取更多资源

Sodium-ion batteries (SIBs) have shown great superiority for grid-scale storage applications because of their low cost and the abundance of sodium. P2-type Na2/3Ni1/3Mn2/3O2 cathode materials have attracted much attention for their high capacities and operating voltages as well as their simple synthesis processes. However, Na+/Vvacancy ordering and the P2-O2 phase transition are unavoidable during Na+ insertion/extraction, leading to undesired voltage plateaus and deficient battery performances. We show that this defect can be effectually eliminated by coating a moderate Na+ conductor Na2Ti3O7 with a smart in situ coating approach and a concomitant doping of Ti4+ into the bulk structure. Based on the combined analysis of ex situ X-ray diffraction, scanning electron microscopy, electrochemical performance tests, and electrochemical kinetic analyses, Na2Ti3O7 coating and Ti4+ doping effectively refrain Na+/vacancy ordering and P2-O2 phase transition during cycling. Additionally, the Na2Ti3O7 coating layer suppresses particle exfoliation and accelerates Na+ diffusion at the cathode and electrolyte interface. Hence, Na2Ti3O7-coated Na2/3Ni1/3Mn2/3O2 exhibits excellent cycling stability (almost no capacity decay after 200 cycles at 5 C) and outstanding rate capability (31.1% of the initial capacity at a high rate of 5 C compared to only 10.4% for the pristine electrode). This coating strategy can provide a new guide for the design of prominent cathode materials for SIBs that are suitable for practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据