4.5 Article

Privacy-Preserving Truth Discovery in Crowd Sensing Systems

期刊

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3277505

关键词

Crowd sensing; truth discovery; privacy-preserving

资金

  1. US National Science Foundation [IIS-1319973, IIS-1553411, CNS-1262277, CNS-1566374, CNS-1652503, CNS-1742845]

向作者/读者索取更多资源

The recent proliferation of human-carried mobile devices has given rise to the crowd sensing systems. However, the sensory data provided by individual participants are usually not reliable. To better utilize such sensory data, the topic of truth discovery, whose goal is to estimate user quality and infer reliable aggregated results through quality-aware data aggregation, has drawn significant attention. Though able to improve aggregation accuracy, existing truth discovery approaches fail to address the privacy concerns of individual users. In this article, we propose a novel privacy-preserving truth discovery (PPTD) framework, which can protect not only users' sensory data but also their reliability scores derived by the truth discovery approaches. The key idea of the proposed framework is to perform weighted aggregation on users' encrypted data using a homomorphic cryptosystem, which can guarantee both high accuracy and strong privacy protection. In order to deal with large-scale data, we also propose to parallelize PPTD with MapReduce framework. Additionally, we design an incremental PPTD scheme for the scenarios where the sensory data are collected in a streaming manner. Extensive experiments based on two real-world crowd sensing systems demonstrate that the proposed framework can generate accurate aggregated results while protecting users' private information.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据