4.7 Article Proceedings Paper

Aerobatics Control of Flying Creatures via Self-Regulated Learning

期刊

ACM TRANSACTIONS ON GRAPHICS
卷 37, 期 6, 页码 -

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3272127.3275023

关键词

Character Animation; Physics Simulation; Physics-based Control; Reinforcement Learning; Deep Learning; Neural Network; Flying Creature

资金

  1. MSIP(Ministry of Science, ICT and Future Planning), Korea under the SW STARLab support program [IITP-2017-0536-20170040]

向作者/读者索取更多资源

Flying creatures in animated films often perform highly dynamic aerobatic maneuvers, which require their extreme of exercise capacity and skillful control. Designing physics-based controllers (a.k.a., control policies) for aerobatic maneuvers is very challenging because dynamic states remain in unstable equilibrium most of the time during aerobatics. Recently, Deep Reinforcement Learning (DRL) has shown its potential in constructing physics-based controllers. In this paper, we present a new concept, Self-Regulated Learning (SRL), which is combined with DRL to address the aerobatics control problem. The key idea of SRL is to allow the agent to take control over its own learning using an additional self-regulation policy. The policy allows the agent to regulate its goals according to the capability of the current control policy. The control and self-regulation policies are learned jointly along the progress of learning. Self-regulated learning can be viewed as building its own curriculum and seeking compromise on the goals. The effectiveness of our method is demonstrated with physically-simulated creatures performing aerobatic skills of sharp turning, rapid winding, rolling, soaring, and diving.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据