4.7 Article Proceedings Paper

Decoupling Simulation Accuracy from Mesh Quality

期刊

ACM TRANSACTIONS ON GRAPHICS
卷 37, 期 6, 页码 -

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3272127.3275067

关键词

Finite Elements; P-Refinement; Error Estimates; Mesh Quality

资金

  1. NSF CAREER [1652515]
  2. NSF [IIS-1320635, DMS-1436591, 1835712]
  3. SNSF [P2TIP2_175859]
  4. Div Of Information & Intelligent Systems
  5. Direct For Computer & Info Scie & Enginr [1652515] Funding Source: National Science Foundation
  6. Office of Advanced Cyberinfrastructure (OAC)
  7. Direct For Computer & Info Scie & Enginr [1835712] Funding Source: National Science Foundation
  8. Swiss National Science Foundation (SNF) [P2TIP2_175859] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

For a given PDE problem, three main factors affect the accuracy of FEM solutions: basis order, mesh resolution, and mesh element quality. The first two factors are easy to control, while controlling element shape quality is a challenge, with fundamental limitations on what can be achieved. We propose to use p-refinement (increasing element degree) to decouple the approximation error of the finite element method from the domain mesh quality for elliptic PDEs. Our technique produces an accurate solution even on meshes with badly shaped elements, with a slightly higher running time due to the higher cost of high-order elements. We demonstrate that it is able to automatically adapt the basis to badly shaped elements, ensuring an error consistent with high-quality meshing, without any per-mesh parameter tuning. Our construction reduces to traditional fixed-degree FEM methods on high-quality meshes with identical performance. Our construction decreases the burden on meshing algorithms, reducing the need for often expensive mesh optimization and automatically compensates for badly shaped elements, which are present due to boundary constraints or limitations of current meshing methods. By tackling mesh generation and finite element simulation jointly, we obtain a pipeline that is both more efficient and more robust than combinations of existing state of the art meshing and FEM algorithms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据