4.5 Article

Probing the origins of photodegradation in organic-inorganic metal halide perovskites with time-resolved mass spectrometry

期刊

SUSTAINABLE ENERGY & FUELS
卷 2, 期 11, 页码 2460-2467

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8se00358k

关键词

-

资金

  1. Office of Naval Research [N00014-17-1-2223]
  2. Air Force Research Laboratory, Space Vehicles Directorate [FA9453-11-C-0253]
  3. National Science Foundation [CHE-1230246, DMR-1534686]
  4. U.S. Department of Energy (DOE) SunShot Initiative under the Next Generation Photovoltaics 3 program [DE-FOA-0000990]
  5. Ohio Research Scholar Program

向作者/读者索取更多资源

Operational and long-term stability of perovskite solar cells are critical for their commercialization on a large scale. To mitigate stability issues, a fundamental understanding of the physicochemical processes associated with the degradation of perovskite materials is needed. Here, we perform time resolved mass spectrometry of the gas species evolved during the photoinduced degradation of organic-inorganic lead trihalide perovskites made with commonly used monovalent cations, including methylammonium (MA), formamidinium (FA), and Cs. Our results indicate that the hot-carrier-induced deprotonation of MA(+) cations is the fundamental origin of the photodegradation, which inevitably leads to the release of volatile species such as ammonia (NH3), aminocarbyne fragments (CNH2), hydrogen (H-2), and iodine/hydrogen iodide (I/HI) from methylammonium lead iodide (MAPbI(3)) at different rates under simulated one sun solar illumination. Photodegradation processes can be mitigated by applying ultra-violet (UV) filters with suitable cutoff wavelengths to the light source. Additionally, we demonstrate that the incorporation of FA reduces the release of organic species but does not prevent the formation of I/HI. However, the addition of Cs effectively suppresses the release of all volatile gases. The best photostability is obtained with the FA/Cs mixed perovskites, showing that the complete removal of MA from mixed-cation perovskites is preferred for more photostable perovskites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据