4.3 Article

Machine learning with force-field-inspired descriptors for materials: Fast screening and mapping energy landscape

期刊

PHYSICAL REVIEW MATERIALS
卷 2, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevMaterials.2.083801

关键词

-

向作者/读者索取更多资源

We present a complete set of chemo-structural descriptors to significantly extend the applicability of machine learning (ML) in material screening and mapping the energy landscape for multicomponent systems. These descriptors allow differentiating between structural prototypes, which is not possible using the commonly used chemical-only descriptors. Specifically, we demonstrate that the combination of pairwise radial, nearest-neighbor, bond-angle, dihedral-angle, and core-charge distributions plays an important role in predicting formation energies, band gaps, static refractive indices, magnetic properties, and modulus of elasticity for three-dimensional materials as well as exfoliation energies of two-dimensional (2D)-layered materials. The training data consist of 24549 bulk and 616 monolayer materials taken from the JARVIS-DFT database. We obtained very accurate ML models using a gradient-boosting algorithm. Then we use the trained models to discover exfoliable 2D-layered materials satisfying specific property requirements. Additionally, we integrate our formation-energy ML model with a genetic algorithm for structure search to verify if the ML model reproduces the density-functional-theory convex hull. This verification establishes a more stringent evaluation metric for the ML model than what is commonly used in data sciences. Our learned model is publicly available on the JARVIS-ML website (https://www.ctcms.nist.gov/jarvisml), property predictions of generalized materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据