4.1 Article

Optimizing hammer mill performance through screen selection and hammer design

期刊

BIOFUELS-UK
卷 4, 期 1, 页码 85-94

出版社

TAYLOR & FRANCIS LTD
DOI: 10.4155/BFS.12.77

关键词

-

资金

  1. US Department of Energy under Department of Energy Idaho Operations Office [DE-AC07-05ID14517]
  2. US Government

向作者/读者索取更多资源

Background: Mechanical preprocessing, which includes particle-size reduction and mechanical separation, is one of the primary operations in the feedstock supply system for a lignocellulosic biorefinery. It is the means by which raw biomass from the field or forest is mechanically transformed into an on-spec feedstock with characteristics better suited for the fuel conversion process. Results: This work provides a general overview of the objectives and methodologies of mechanical preprocessing and then presents experimental results illustrating improved size reduction via optimization of hammer mill configuration, improved size reduction via pneumatic-assisted hammer milling and improved control of particle size and particle-size distribution through proper selection of grinder process parameters. Conclusion: Optimal grinder configuration for maximal process throughput and efficiency is strongly dependent on feedstock type and properties, such as moisture content. Tests conducted using a HG200 hammer grinder indicate that tip speed, screen size and optimizing hammer geometry can increase grinder throughput as much as 400%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据