4.6 Article

Greenhouse gas emissions reduction in China by cleaner coal technology towards 2020

期刊

ENERGY STRATEGY REVIEWS
卷 7, 期 -, 页码 63-70

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.esr.2014.08.001

关键词

Clean coal technology; CO2 emissions; Chinese power system; Life cycle assessment

向作者/读者索取更多资源

The Chinese energy system, a major CO2 emitter, relies heavily on fossil fuels, especially coal. Coal will continue to play a major role in the new installed power generation capacity in the future, which will cause unavoidable environmental problems. Clean coal technologies (CCTs) are essential for emissions reduction in the power sector. In general, CCTs cover coal upgrading, efficiency improvements, advanced technologies and zero emissions technologies. Besides these, CCTs also include other emissions reduction technologies and comprehensive utilization technologies in China. This paper review the complete life cycle modeling of CCTs. The advanced technologies include super-critical (super-C), ultra super-critical (USC) and integrated gasification combined cycle (IGCC). The results show that the higher efficiency technologies have lower potential impacts. Compared with the average level of power generation technology, CO2 emissions reduction is 6.4% for super-C, 37.4% for USC and 61.5% for IGCC. Four coal power scenarios are developed based on the assumption of potential investment power for CCTs in 2020, which are super-C, USC, USC and old low efficiency generation substitution by USC, IGCC and carbon capture and storage (CCS). The CO2 emissions intensity is 1.93 kg/kWh for super-C, 1.69 kg/kWh for USC, 1.59 kg/kWh for USC + replacement and 1.29 kg/kWh for IGCC + CCS. The CO2 emissions intensity was 1.95 kg/kWh in 2010, which had decreased 5.5% compared with the level in 2005. The energy structure is continuously being improved and optimized. The potential carbon reduction will be limited in the power system in 2020 by current commercial CCTs with the generation efficiency increase. The most impressive technology is IGCC with CCS which enables greenhouse gas reduction of 37.6% compared with the level in 2005. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据