4.5 Article

Systematic study of aqueous monoethanolamine-based CO2 capture process: model development and process improvement

期刊

ENERGY SCIENCE & ENGINEERING
卷 4, 期 1, 页码 23-39

出版社

WILEY
DOI: 10.1002/ese3.101

关键词

CO2 capture; MEA; model validation; process improvements; rate-based model

资金

  1. Australian IPRS-APA scholarship
  2. CSIRO Top-up scholarship
  3. National Natural Science Foundation of China [51134017]

向作者/读者索取更多资源

In this paper, we present improvements to postcombustion capture (PCC) processes based on aqueous monoethanolamine (MEA). First, a rigorous, rate-based model of the carbon dioxide (CO2) capture process from flue gas by aqueous MEA was developed using Aspen Plus, and validated against results from the PCC pilot plant trials located at the coal-fired Tarong power station in Queensland, Australia. The model satisfactorily predicted the comprehensive experimental results from CO2 absorption and CO2 stripping process. The model was then employed to guide the systematic study of the MEA-based CO2 capture process for the reduction in regeneration energy penalty through parameter optimization and process modification. Important process parameters such as MEA concentration, lean CO2 loading, lean temperature, and stripper pressure were optimized. The process modifications were investigated, which included the absorber intercooling, rich-split, and stripper interheating processes. The minimum regeneration energy obtained from the combined parameter optimization and process modification was 3.1 MJ/kg CO2. This study suggests that the combination of a validated rate-based model and process simulation can be used as an effective tool to guide sophisticated process plant, equipment design and process improvement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据