4.6 Article

PFEM-based modeling of industrial granular flows

期刊

COMPUTATIONAL PARTICLE MECHANICS
卷 1, 期 1, 页码 47-70

出版社

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1007/s40571-014-0004-9

关键词

Granular flow; PFEM; Numerical modeling; Silo discharge; Milling

资金

  1. European Research Council/ERC [320815]
  2. Advanced Grant Project COMP-DES-MAT
  3. Spanish Ministry of Science and Innovation [BIA2011-24258]
  4. Hjalmar Lundbohm Research Center
  5. LKAB

向作者/读者索取更多资源

The potential of numerical methods for the solution and optimization of industrial granular flows problems is widely accepted by the industries of this field, the challenge being to promote effectively their industrial practice. In this paper, we attempt to make an exploratory step in this regard by using a numerical model based on continuous mechanics and on the so-called Particle Finite Element Method (PFEM). This goal is achieved by focusing two specific industrial applications in mining industry and pellet manufacturing: silo discharge and calculation of power draw in tumbling mills. Both examples are representative of variations on the granular material mechanical response-varying from a stagnant configuration to a flow condition. The silo discharge is validated using the experimental data, collected on a full-scale flat bottomed cylindrical silo. The simulation is conducted with the aim of characterizing and understanding the correlation between flow patterns and pressures for concentric discharges. In the second example, the potential of PFEM as a numerical tool to track the positions of the particles inside the drum is analyzed. Pressures and wall pressures distribution are also studied. The power draw is also computed and validated against experiments in which the power is plotted in terms of the rotational speed of the drum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据