4.4 Article

Draft genome of Dugesia japonica provides insights into conserved regulatory elements of the brain restriction gene nou-darake in planarians

期刊

ZOOLOGICAL LETTERS
卷 4, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s40851-018-0102-2

关键词

Planarian; Dugesia japonica; Genome; Conserved non-coding elements; Nou-darake

类别

资金

  1. Global COE Program A06 of Kyoto University
  2. Joint Research of National Institute of Genetics (NIG-JOINT)
  3. Japan Society for the Promotion of Science (JSPS) [13 J01078]
  4. [22124001]
  5. [17GS0318]

向作者/读者索取更多资源

Background: Planarians are non-parasitic Platyhelminthes (flatworms) famous for their regeneration ability and for having a well-organized brain. Dugesia japonica is a typical planarian species that is widely distributed in the East Asia. Extensive cellular and molecular experimental methods have been developed to identify the functions of thousands of genes in this species, making this planarian a good experimental model for regeneration biology and neurobiology. However, no genome-level information is available for D. japonica, and few gene regulatory networks have been identified thus far. Results: To obtain whole-genome information on this species and to study its gene regulatory networks, we extracted genomic DNA from 200 planarians derived from a laboratory-bred asexual clonal strain, and sequenced 476 Gb of data by second-generation sequencing. Kmer frequency graphing and fosmid sequence analysis indicated a complex genome that would be difficult to assemble using second-generation sequencing short reads. To address this challenge, we developed a new assembly strategy and improved the de novo genome assembly, producing a 1.56 Gb genome sequence (DjGenome ver1.0, including 202,925 scaffolds and N50 length 27,741 bp) that covers 99.4% of all 19,543 genes in the assembled transcriptome, although the genome is fragmented as 80% of the genome consists of repeated sequences (genomic frequency >= 2). By genome comparison between two planarian genera, we identified conserved non-coding elements (CNEs), which are indicative of gene regulatory elements. Transgenic experiments using Xenopus laevis indicated that one of the CNEs in the Djndk gene may be a regulatory element, suggesting that the regulation of the ndk gene and the brain formation mechanism may be conserved between vertebrates and invertebrates. Conclusion: This draft genome and CNE analysis will contribute to resolving gene regulatory networks in planarians. The genome database is available at: http://www.planarian.jp.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据