4.4 Article

Systems biology in vaccine design

期刊

MICROBIAL BIOTECHNOLOGY
卷 5, 期 2, 页码 295-304

出版社

WILEY
DOI: 10.1111/j.1751-7915.2011.00321.x

关键词

-

资金

  1. Universite Pierre et Marie Curie, Centre National de la Recherche Scientifique
  2. Institut pour la Recherche Medicale
  3. European Union [LSHB-CT-04-005246, LSBH-CT-06-018933]

向作者/读者索取更多资源

Vaccines are the most effective tools to prevent infectious diseases and to minimize their impact on humans or animals. Despite the successful development of vaccines that are able to elicit potent and protective immune responses, the majority of vaccines have been so far developed empirically and mechanistic events leading to protective immune responses are often poorly understood. This hampers the development of new prophylactic as well as therapeutic vaccines for infectious diseases and cancer. Biological correlates of immune-mediated protection are currently based on standard readout such as antibody titres and ELISPOT assays. The development of successful vaccines for difficult settings, such as infectious agents leading to chronic infection (HIV, HCV. . .) or cancer, calls for novel readout systems or correlates of immune-mediated protection that would reliably predict immune responses to novel vaccines in vivo. Systems biology offers a new approach to vaccine design that is based upon understanding the molecular network mobilized by vaccination. Systems vaccinology approaches investigate more global correlates of successful vaccination, beyond the specific immune response to the antigens administered, providing new methods for measuring early vaccine efficacy and ultimately generating hypotheses for understanding the mechanisms that underlie successful immunogenicity. Using functional genomics, specific molecular signatures of individual vaccine can be identified and used as predictors of vaccination efficiency. The immune response to vaccination involves the coordinated induction of master transcription factors that leads to the development of a broad, polyfunctional and persistent immune response integrating all effector cells of the immune systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据