4.6 Article

Autophagic flux response and glioblastoma sensitivity to radiation

期刊

CANCER BIOLOGY & MEDICINE
卷 15, 期 3, 页码 260-274

出版社

CHINESE ANTI-CANCER ASSOC
DOI: 10.20892/j.issn.2095-3941.2017.0173

关键词

Glioblastoma; autophagy; radiation; temozolomide; TFEB

向作者/读者索取更多资源

Objective: Glioblastoma is the most common primary brain tumor in adults and one of the most lethal human tumors. It constitutes a unique non-metastasizing human tumor model with high resistance to radiotherapy and chemotherapy. The current study investigates the association between autophagic flux and glioblastoma cell resistance. Methods: The expression kinetics of autophagy- and lysosome-related proteins following exposure of two glioblastoma cell lines (T98 and U87) to clinically relevant radiation doses was examined. Then, the response of cells resistant to radiotherapy and chemotherapy was investigated after silencing of LC3A, LC3B, and TFEB genes in vitro and in vivo. Results: Following irradiation with 4 Gy, the relatively radioresistant T98 cells exhibited enhanced autophagic flux. The more radiosensitive U87 cell line suffered a blockage of autophagic flux. Silencing of LC3A, LC3B, and TFEB genes in vitro, significantly sensitized cells to radiotherapy and temozolomide. Silencing of the LC3A gene sensitized mouse xenografts to radiation. Conclusions: Autophagy in cancer cells may be a key factor of radio-resistance and chemo-resistance in glioblastoma cells. Blocking autophagy may improve the efficacy of radiochemotherapy for glioblastoma patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据