4.5 Article

Characterization of the energy-dependent response of riometer absorption

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2014JA020027

关键词

cosmic noise absorption; riometer; electron precipitation; radiation belts; particle modeling; electron energy

资金

  1. NSF CEDAR [AGS-1243183]
  2. UC Lab Fees Research Program [116720]
  3. Directorate For Geosciences
  4. Div Atmospheric & Geospace Sciences [1243183] Funding Source: National Science Foundation

向作者/读者索取更多资源

Ground-based riometers provide an inexpensive means to continuously remote sense the precipitation of electrons in the dynamic auroral region of Earth's ionosphere. The energy-dependent relationship between riometer absorption and precipitating electrons is thus of great importance for understanding the loss of electrons from the Earth's magnetosphere. In this study, statistical and event-based analyses are applied to determine the energy of electrons to which riometers chiefly respond. Time-lagged correlation analysis of trapped to precipitating fluxes shows that daily averaged absorption best correlates with approximate to 60 keV trapped electron flux at zero-time lag, although large variability is observed across different phases of the solar cycle. High-time resolution statistical cross-correlation analysis between signatures observed by riometer stations, and assuming electron motion due to gradient and curvature drift, results in inferred energies of 10-100 keV, with a clear maximum in occurrence for 40-60 keV electrons. One event is considered in detail utilizing riometer absorption signatures obtained from several stations. The mean inferred energies for the initial rise time and peak of the absorption after correction for electric field effects were approximate to 70 keV and approximate to 60 keV, respectively. The analyses presented provide a means to characterize the energy of electrons to which riometers are responding in both a statistical sense and during the evolution of individual events.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据