4.7 Article

Berberine Reduces Pyruvate-driven Hepatic Glucose Production by Limiting Mitochondrial Import of Pyruvate through Mitochondrial Pyruvate Carrier

期刊

EBIOMEDICINE
卷 34, 期 -, 页码 243-255

出版社

ELSEVIER
DOI: 10.1016/j.ebiom.2018.07.039

关键词

Berberine; Gluconeogenesis; Sirtuin3; Mitochondrial pyruvate carrier 1

资金

  1. National Natural Science Foundation of China [81603353]
  2. Natural Science Foundation of Jiangsu Province [BK20160762]

向作者/读者索取更多资源

Background: Mitochondrial pyruvate import via mitochondrial pyruvate carrier (MPC) is a central step in hepatic gluconeogenesis. Berberine inhibits hepatic gluconeogenesis, but the mechanism is incompletely understood. This study aims to investigate whether berberine could reduce excessive hepatic glucose production (HGP) by limiting mitochondrial import of pyruvate through MPC1. Methods: High-fat diet (HFD) feeding augmented HGP. The effects of berberine on hepatic fatty acid oxidation, sirtuin3 (SIRT3) induction and mitochondrial pyruvate carrier 1 (MPC1) function were examined. Findings: HFD feeding increased hepatic acetyl coenzyme A (acetyl CoA) accumulation with impaired pyruvate dehydrogenase (PDH) activity and increased pyruvate carboxylase (PC) induction. Berberine reduced acetyl CoA accumulation by limiting fatty acid oxidation and prevented mitochondrial pyruvate shift from oxidation to gluconeogenesis through carboxylation. Upon pyruvate response, SIRT3 binded to MPC1 and stabilized MPC1 protein via deacetylation modification, facilitating mitochondrial import of pyruvate. Berberine preserved the acetylation of MPC1 by suppression of SIRT3 induction and impaired MPC1 protein stabilization via protein degradation, resultantly limiting mitochondrial pyruvate supply for gluconeogenesis. Interpretation: Berberine reduced acetyl CoA contents by limiting fatty acid oxidation and increased MPC1 degradation via preserving acetylation, thereby restraining HGP by blocking mitochondrial import of pyruvate. These findings suggest that limitation of mitochondrial pyruvate import might be a therapeutic strategy to prevent excessive hepatic glucose production. (c) 2018 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据