4.8 Article

An ideal lignin facilitates full biomass utilization

期刊

SCIENCE ADVANCES
卷 4, 期 9, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aau2968

关键词

-

资金

  1. U.S. Department of Energy (DOE) Great Lakes Bioenergy Research Center (DOE Biological and Environmental Research Office of Science) [DE-FC02-07ER64494, DE-SC0018409]
  2. DOE Center of Bioenergy Innovation [DE-AC05-000R22725]
  3. Swiss Competence Center for Energy Research: Biomass for a Swiss Energy Future through Swiss Commission for Technology and Innovation grant [KTI.2014.0116]

向作者/读者索取更多资源

Lignin, a major component of lignocellulosic biomass, is crucial to plant growth and development but is a major impediment to efficient biomass utilization in various processes. Valorizing lignin is increasingly realized as being essential. However, rapid condensation of lignin during acidic extraction leads to the formation of recalcitrant condensed units that, along with similar units and structural heterogeneity in native lignin, drastically limits product yield and selectivity. Catechyl lignin (C-lignin), which is essentially a benzodioxane homopolymer without condensed units, might represent an ideal lignin for valorization, as it circumvents these issues. We discovered that C-lignin is highly acid-resistant. Hydrogenolysis of C-lignin resulted in the cleavage of all benzodioxane structures to produce catechyl-type monomers in near-quantitative yield with a selectivity of 90% to a single monomer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据