4.8 Article

Magic angle spinning spheres

期刊

SCIENCE ADVANCES
卷 4, 期 9, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aau1540

关键词

-

资金

  1. NIH [DP2GM119131]
  2. NSF [DBI-1553577]

向作者/读者索取更多资源

Magic angle spinning (MAS) is commonly used in nuclear magnetic resonance of solids to improve spectral resolution. Rather than using cylindrical rotors for MAS, we demonstrate that spherical rotors can be spun stably at the magic angle. Spherical rotors conserve valuable space in the probe head and simplify sample exchange and microwave coupling for dynamic nuclear polarization. In this current implementation of spherical rotors, a single gas stream provides bearing gas to reduce friction, drive propulsion to generate and maintain angular momentum, and variable temperature control for thermostating. Grooves are machined directly into zirconia spheres, thereby converting the rotor body into a robust turbine with high torque. We demonstrate that 9.5-mm-outside diameter spherical rotors can be spun at frequencies up to 4.6 kHz with N-2(g) and 10.6 kHz with He(g). Angular stability of the spinning axis is demonstrated by observation of Br-79 rotational echoes out to 10 ms from KBr packed within spherical rotors. Spinning frequency stability of +/- 1 Hz is achieved with resistive heating feedback control. A sample size of 36. l can be accommodated in 9.5-mm-diameter spheres with a cylindrical hole machined along the spinning axis. We further show that spheres can be more extensively hollowed out to accommodate 161 mu l of the sample, which provides superior signal-to-noise ratio compared to traditional 3.2-mm-diameter cylindrical rotors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据