4.6 Article

Nanoplasmonics for Real-Time and Label-Free Monitoring of Microbial Biofilm Formation

期刊

ACS SENSORS
卷 3, 期 8, 页码 1499-1509

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssensors.8b00287

关键词

biofilms; real-time monitoring LSPR; antibiotics; drug screening; E. coli

资金

  1. Okinawa Institute of Science and Technology Graduate University (GIST)
  2. Cabinet Office, Government of Japan
  3. Japan Society for the Promotion of Science [17K06173]

向作者/读者索取更多资源

Microbial biofilms possess intrinsic resistance against conventional antibiotics and cleaning procedures; thus, a better understanding of their complex biological structures is crucial in both medical and industrial applications. Existing laboratory methodologies have focused on macroscopic and mostly indirect characterization of mechanical and microbiological properties of biofilms adhered on a given substrate. However, the kinetics underlying the biofilm formation is not well understood, while such information is critical to understanding how drugs and chemicals influence the biofilm formation. Herein, we report the use of localized surface plasmon resonance (LSPR) for real-time, label-free monitoring of E. coli biofilm assembly on a nanoplasmonic substrate consisting of gold mushroom-like structures. Our LSPR sensor is able to capture the signatures of biofilm formation in real-time by measuring the wavelength shift in the LSPR resonance peak with high temporal resolution. We employ this sensor feature to elucidate how biofilm formation is affected by different drugs, including conventional antibiotics (kanamycin and ampicillin) as well as rifapentine, a molecule preventing cell adhesion yet barely affecting bacterial viability and vitality. Due to its flexibility and simplicity, our LSPR based platform can be used on a wide variety of clinically relevant bacteria, thus representing a valuable tool in biofilm characterization and drug screening.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据