4.6 Article

Biocompatibility and in Vitro Degradation Behavior of Magnesium-Calcium Alloy Coated with Calcium Phosphate Using an Unconventional Electrolyte

期刊

ACS BIOMATERIALS SCIENCE & ENGINEERING
卷 2, 期 1, 页码 56-64

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsbiomaterials.5b00343

关键词

magnesium alloy; biomaterials; cytocompatibility; calcium phosphate; degradation

资金

  1. National Institute for Materials Science (NIMS)
  2. JSPS KAKENHI [26282151]
  3. Grants-in-Aid for Scientific Research [26282151] Funding Source: KAKEN

向作者/读者索取更多资源

Calcium phosphate (CaP) was electrochemically coated on a magnesium-calcium (Mg-Ca) alloy using an unconventional electrolyte and a pulse-potential method. The CaP particles of the coating were relatively large, flat, and irregularly oriented; however, they covered the entire alloy surface with a coating thickness of 5 mu m. Cytocompatibility tests using L929 cells inoculated in Eagle minimum essential medium supplemented with 10% (v/v) fetal bovine serum (E-MEM +FBS) revealed that CaP coating improved the cytocompatibility of the alloy. It also showed effective suppression of Mg2+ ion release from the substrate of the coated alloy and consequently reduced the pH increase of the medium. In vitro degradation experiments using electrochemical techniques in simulated body fluid (SBF) also suggested significant enhancement of the alloy degradation resistance by CaP coating. Potentiodynamic polarization results showed that the corrosion current density of the coated alloy was similar to 95% lower than that of the bare metal. Electrochemical impedance spectroscopy results revealed that the polarization resistance (R-p) of the coated alloy was more than an order of magnitude higher than that of the bare metal after 2 h of immersion in SBF. Interestingly, after 72 h of immersion, the measured RP had decreased by similar to 82%, and the coating appeared cracked and damaged. The results suggest that SBF is more aggressive than E-MEM+FBS cell culture medium.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据