4.7 Article

Recovery of secular deformation field of Mojave Shear Zone in Southern California from historical terrestrial and GPS measurements

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
卷 120, 期 5, 页码 3965-3990

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015JB011941

关键词

Mojave East California Shear Zone; secular deformation; Landers and Hector Mine earthquakes; postseismic deformation; GPS; triangulation; trilateration

资金

  1. National Natural Science Foundation of China [41090294]
  2. NSF I/RD grant [EAR-1323052]

向作者/读者索取更多资源

The 1992 M-w 7.3 Landers and 1999 M-w 7.1 Hector Mine earthquakes struck the Eastern California Shear Zone (ECSZ) in the Mojave Desert, Southern California. Coseismic and postseismic deformation from these events affect efforts to use Global Positioning System (GPS) observations collected since these events to establish a secular surface velocity field, especially in the near field of the coseismic ruptures. We devise block motion models constrained by both historical pre-Landers triangulation and trilateration observations and post-Landers GPS measurements to recover the secular deformation field and differentiate the postseismic transients in the Mojave region. Postseismic transients are found to remain in the Southern California Earthquake Center Crustal Motion Map Version 4, Plate Boundary Observatory, and Scripps Orbit and Permanent Array Center GPS velocity solutions in the form of 2-3mm/yr excess right-lateral shear across the Landers and Hector Mine coseismic ruptures. The cumulative deformation rate across the Mojave ECSZ is 13.2-14.4mm/yr, at least twice the geologic rate since the late Pleistocene (6.21.9mm/yr). Postseismic GPS time series based on our secular velocity field reveal enduring late-stage transient motions in the near field of the coseismic ruptures that provide new constraints on the rheological structure of the lower crust and upper mantle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据