4.6 Article

What controls the seasonal cycle of black carbon aerosols in India?

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
卷 120, 期 15, 页码 7788-7812

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015JD023298

关键词

aerosol black carbon; regional modeling; source contribution analysis; regional transport; air quality

资金

  1. National Science Foundation

向作者/读者索取更多资源

The seasonal variability of black carbon (BC) aerosols in India is studied using high resolution (10 km) BC simulations conducted using the Weather Research and Forecasting Model coupled with Chemistry. The model reproduces the observed seasonality of surface BC fairly well over most parts of India but fails to capture the seasonality in the Himalayas and deviates from the observed BC magnitude at several sites. The errors in modeled BC are attributed to uncertainties in BC emissions and their diurnal cycle, planetary boundary layer height underestimation, and aerosol processes. Model results show distinct but opposite seasonality of BC in the lower (LT) and free troposphere (FT) with BC showing winter maximum and summer minimum in the LT and vice versa in the FT. Our analysis shows that BC seasonality is not driven by seasonality of the anthropogenic emissions but by changes in the regional meteorology through weakening of the horizontal transport and strengthening of the vertical transport of BC during summertime compared to winter. BC in both the LT and FT comes mostly from anthropogenic emissions followed by biomass burning emissions except during winter when long-distant sources become more important in the FT. BC in the FT is significantly affected by anthropogenic emissions from all parts of India. The source-receptor relationship changes seasonally, but the regional transport remains a significant contributor to BC loadings in the LT of India, highlighting the necessity of considering nonlocal sources along with local emissions when designing strategies for mitigating BC impacts on air quality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据