4.6 Article

Microstructural Characteristics and Tribological Behavior of HVOF-Sprayed Novel Fe-Based Alloy Coatings

期刊

COATINGS
卷 4, 期 1, 页码 98-120

出版社

MDPI
DOI: 10.3390/coatings4010098

关键词

thermal spray; HVOF; iron-based coating; microstructure; sliding wear; abrasion wear; cavitation erosion wear

资金

  1. Finnish National Graduate School (Concurrent Mechanical Engineering)
  2. Tampere University of Technology

向作者/读者索取更多资源

Thermally-sprayed Fe-based coatings have shown their potential for use in wear applications due to their good tribological properties. In addition, these kinds of coatings have other advantages, e.g., cost efficiency and positive environmental aspects. In this study, the microstructural details and tribological performances of Fe-based coatings (Fe-Cr-Ni-B-C and Fe-Cr-Ni-B-Mo-C) manufactured by High Velocity Oxygen Fuel (HVOF) thermal spray process are evaluated. Traditional Ni-based (Ni-Cr-Fe-Si-B-C) and hard-metal (WC-CoCr) coatings were chosen as references. Microstructural investigation (field-emission scanning electron microscope FESEM and X-Ray diffractometry XRD) reveals a high density and low oxide content for HVOF Fe-based coatings. Particle melting and rapid solidification resulted in a metastable austenitic phase with precipitates of mixed carbides and borides of chromium and iron which lead to remarkably high nanohardness. Tribological performances were evaluated by means of the ball on-disk dry sliding wear test, the rubber-wheel dry particle abrasion test, and the cavitation erosion wear test. A higher wear resistance validates Fe-based coatings as a future alternative to the more expensive and less environmentally friendly Ni-based alloys.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据