4.5 Article

The Midlatitude Summer Night Anomaly as observed by CHAMP and GRACE: Interpreted as tidal features

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
卷 119, 期 6, 页码 4905-4915

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2014JA019959

关键词

-

资金

  1. Space Agency of the German Aerospace Center (DLR) through Federal Ministry of Economics and Technology
  2. Alexander von Humboldt Foundation through a Research Fellowship for Postdoctoral Researchers

向作者/读者索取更多资源

This paper presents a description of the Midlatitude Summer Night Anomaly (MSNA) in terms of solar tidal signatures, based on in situ observations from CHAMP (CHAllenging Minisatellite Payload) and GRACE (Gravity Recovery and Climate Experiment) during the solar minimum years 2008 and 2009. Our analysis is focusing on 40 degrees to 60 degrees magnetic latitude ranges in both hemispheres, where the reversed diurnal variations of the electron density are strongest. The results revealed that in the Southern Hemisphere the longitudinally symmetric tide D0 is particularly strong during December solstice. The well-known Weddell Sea Anomaly is caused by a simultaneous constructive interference of three components D0, DW2, and SPW1. During June solstice the eastward propagating tide DE1 is the strongest in the Northern Hemisphere, which causes a wave-2 longitudinal pattern. The two crests of the wave-2 pattern at nighttime correspond well with the MSNA feature in the Northern Hemisphere. The MSNA feature over the USA continent is particularly strong, which can be explained by the combined contributions of the components DE1, D0, and DW2. The diurnally varying difference in electron density between the USA East and West Coast can also be explained by the phase propagation of the DE1. A similar effect has also been observed in the Asian region. The peak electron densities of the tidal component D0 appear around 0700 LT and 2000 LT in the Southern and Northern Hemispheres, respectively. The time shift suggests that the two hemispheres move in antiphase up and down. The planetary wave SPW1 exhibits an electron density crest near longitude sectors where the dip equator reaches far into the summer hemisphere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据