4.5 Article

A global multispecies single-fluid MHD study of the plasma interaction around Venus

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2012JA018265

关键词

-

资金

  1. NASA [NNX10AB95G]
  2. NASA [NNX10AB95G, 136345] Funding Source: Federal RePORTER

向作者/读者索取更多资源

This paper reports a new global multispecies single-fluid MHD model that was recently developed for Venus. This model is similar to the numerical model that has been successfully applied to Mars. Mass densities of proton and three important ionospheric ion species (O+, O-2(+), and CO2+) are self-consistently calculated in the model by including related chemical reactions and ion-neutral collision processes. The simulation domain covers the region from 100 km altitude above the surface up to 24 R-V in the tail. An adaptive spherical grid structure is constructed with radial resolution of about 5 km in the lower ionosphere. Bow shock locations are well reproduced for both solar-maximum and solar-minimum conditions using appropriate solar wind parameters for each case. It is shown that the shock locations are farther from the planet during the solar maximum condition, because of both the enhanced solar radiation strength and the relatively small Mach number. The simulation results also agree well with Venus Express observations, as shown by comparisons between model results with magnetic fields observed by the spacecraft. Citation: Ma, Y. J., A. F. Nagy, C. T. Russell, R. J. Strangeway, H. Y. Wei, and G. Toth (2013), A global multispecies single-fluid MHD study of the plasma interaction around Venus, J. Geophys. Res. Space Physics, 118, 321-330, doi:10.1029/2012JA018265.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据