4.7 Article

Mississippi River Plume Variability in the Gulf of Mexico From SMAP and MODIS-Aqua Observations

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
卷 123, 期 9, 页码 6620-6638

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2018JC014159

关键词

Mississippi River; river plume; SMAP; tDOC; MODIS-Aqua

资金

  1. Gulf of Mexico Research Initiative
  2. NASA Ocean Vector Winds Science Team [NNX14AM70G]
  3. Ocean Surface Topography Science Team [NNX13AD80G]

向作者/读者索取更多资源

Plain Language Summary The Mississippi-Atchafalaya River System (MARS) is an important source of freshwater and terrigenous material to the Gulf of Mexico. We used sea surface salinity (SSS) measurements from the Soil Moisture Active Passive (SMAP) satellite and terrigenous dissolved organic carbon (tDOC) from Moderate Resolution Imaging Spectroradiometer (MODIS) to describe the MARS plume seasonality and interaction with the Gulf circulation. Our analyses revealed good agreement between SMAP and in situ salinity for S>31, and that satellite-derived tDOC can serve as a useful tracer for the river plume. A boundary detection algorithm was used to quantify the frequency of plume occurrence in the Gulf for the last 15years. The MARS plume has its maximum offshore extension during summer, retracting to closer to shore during fall/winter. Variability at monthly time scales is controlled by river discharge and alongshore winds, which explain up to 60% of the local variance in the frequency of plume occurrence near the shelfbreak. Maximum variability in plume extension is found to the east of the Mississippi River Delta due to wind reversals that generally occur during summer. The combined use of SMAP salinity and MODIS-tDOC allowed for a detailed view of anomalous events in 2015 and 2016, when the MARS plume was transported for 350km from the coast due to interactions with the Loop Current and with dipole eddies. While SMAP observations allow for tracking the river plume even in cloudy conditions, high-resolution MODIS data allow for a more accurate characterization of sharp fronts and of the width of river-influenced filaments. The Mississippi-Atchafalaya River System (MARS) is an important source of freshwater, nutrients, carbon and sediments to the Gulf of Mexico. Here we use satellite observations of surface salinity and of dissolved organic carbon of terrigenous origin to describe the behavior of the MARS plume and its interaction with the Gulf circulation for the last 15years. We show that the MARS plume is transported offshore during summer and toward the coast during fall/winter and that this seasonal variability is controlled by the interaction between river discharge and winds. In 2015 and 2016, the MARS plume was transported for 350km from the coast due to interactions with the large-scale circulation in the Gulf. While salinity from satellite observations allows us to track the river plume even in cloudy conditions, tDOC provides a more accurate characterization of sharp fronts and of the width of river-influenced filaments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据