4.2 Article

Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol-gel technique

期刊

APPLIED NANOSCIENCE
卷 5, 期 4, 页码 449-456

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s13204-014-0337-y

关键词

Cobalt; Doped TiO2; Nanoparticles; Crystalline size; FTIR; Optical properties

向作者/读者索取更多资源

TiO2 nanoparticles doped with different concentrations of cobalt (4, 8, 12 and 16 %) were synthesized by sol-gel method at room temperature with appropriate reactants. In general, TiO2 can exist in anatase, rutile, and brookite phases. In this present study, we used titanium tetra iso propoxide and 2-propanol as a common starting materials and the obtained products were calcined at 500 degrees C and 800 degrees C to get anatase and rutile phases, respectively. The crystalline sizes of the doped and undoped TiO2 nanoparticles were observed with X-ray diffraction (XRD) analysis. The functional groups of the samples were identified by Fourier transform infrared spectroscopy (FTIR). From UV-VIS diffuse reflectance spectra (DRS), the band gap energy and excitation wavelength of doped and undoped TiO2 nanoparticles were identified. The defect oriented emissions were seen from photoluminescence (PL) study. The spherical uniform size distribution of particles and elements present in the samples was determined using two different techniques viz., scanning electron microscopy (SEM) with energy-dispersive spectrometer (EDX) and transmission electron microscope (TEM) with selected area electron diffraction (SAED) pattern. The second harmonic generation (SHG) efficiency was also found and the obtained result was compared with potassium di hydrogen phosphate (KDP).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据