4.7 Article

Analysis of fluid injection-induced fault reactivation and seismic slip in geothermal reservoirs

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
卷 119, 期 4, 页码 3340-3353

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2013JB010679

关键词

-

资金

  1. U.S. Department of Energy [DOE-DE-EE0002761]

向作者/读者索取更多资源

We explore the issue of fault reactivation induced in enhanced geothermal systems by fluid injection. Specifically, we investigate the role of late stage activation by thermal drawdown. A Thermal-Hydrological-Mechanical simulator incorporating a ubiquitous joint constitutive model is used to systematically simulate the seismic slip of an embedded critically stressed strike-slip fault. We examine the effects of both pore pressure perturbation and thermal shrinkage stress on the magnitude of the resulting events and timing. We analyze the sensitivity of event magnitude and timing to changes in the permeability of the fault and fractured host, fracture spacing, injection temperature, and fault stress obliquity. From this we determine that (1) the fault permeability does not affect the timing of the events nor their size, since fluid transmission and cooling rate are controlled by the permeability of the host formation. (2) When the fractured medium permeability is reduced (from 10(-13) to 10(-16) m(2)), the timing of the event is proportionately delayed (by a corresponding 3 orders of magnitude). (3) Injection temperature only influences the magnitude but not the timing of the secondary thermal event. The larger the temperature differences between that of the injected fluid and the ambient rock, the larger the magnitude of the secondary slip event. (4) For equivalent permeabilities, changing the fracture spacing (10 m-50 m-100 m) primarily influences the rate of heat energy transfer and thermal drawdown within the reservoir. Smaller spacing between fractures results in more rapid thermal recovery but does not significantly influence the timing of the secondary thermal rupture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据