4.7 Article

Thermal equation of state and thermodynamic properties of iron carbide Fe3C to 31 GPa and 1473 K

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
卷 118, 期 10, 页码 5274-5284

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2013JB010270

关键词

iron carbide; equation of state; synchrotron; X-ray diffraction

资金

  1. Ministry of Education and Science of Russian Federation [14.B37.21.0457, 14.B25.31.0032]
  2. Integration project of Siberian Branch RAS [97]
  3. Russian Foundation for Basic Research [12-05-33008]
  4. CDAC [NSF EAR-1025629, EAR-1291881]

向作者/读者索取更多资源

Resent experimental and theoretical studies suggested preferential stability of Fe3C over Fe7C3 at the condition of the Earth's inner core. Previous studies showed that Fe3C remains in an orthorhombic structure with the space group Pnma to 250 GPa, but it undergoes ferromagnetic (FM) to paramagnetic (PM) and PM to nonmagnetic (NM) phase transitions at 6-8 and 55-60 GPa, respectively. These transitions cause uncertainties in the calculation of the thermoelastic and thermodynamic parameters of Fe3C at core conditions. In this work we determined P-V-T equation of state of Fe3C using the multianvil technique and synchrotron radiation at pressures up to 31 GPa and temperatures up to 1473 K. A fit of our P-V-T data to a Mie-Gruneisen-Debye equation of state produce the following thermoelastic parameters for the PM-phase of Fe3C: V-0=154.6 (1) angstrom(3), K-T0 = 192 (3) GPa, K-T=4.5 (1), (0) = 2.09 (4), (0)=490 (120) ?, and q=-0.1 (3). Optimization of the P-V-T data for the PM phase along with existing reference data for thermal expansion and heat capacity using a Kunc-Einstein equation of state yielded the following parameters: V-0=2.327 cm(3)/mol (154.56 angstrom(3)), K-T0=190.8 GPa, K-T=4.68, (E10)=305 K (which corresponds to (0)=407 K), (0)=2.10, e(0)=9.2x10(-5) K-1, m=4.3, and g=0.66 with fixed parameters m(E1)=3n=12, =0, =0.3, and a(0)=0. This formulation allows for calculations of any thermodynamic functions of Fe3C versus T and V or versus T and P. Assuming carbon as the sole light element in the inner core, extrapolation of our equation of state of the NM phase of Fe3C suggests that 3.30.9 wt % C at 5000 ? and 2.30.8 wt % C at 7000 ? matches the density at the inner core boundary.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据