4.5 Article

Soil Temperature Dynamics Modulate N2O Flux Response to Multiple Nitrogen Additions in an Alpine Steppe

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES
卷 123, 期 10, 页码 3308-3319

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2018JG004488

关键词

Nitrous oxide; nonlinear response; greenhouse gases; ammonia oxidizing archaea (AOA); ammonia oxidizing bacteria (AOB); denitrifiers

资金

  1. National Natural Science Foundation of China [31770521, 31670482]
  2. Key Research Program of Frontier Sciences, Chinese Academy of Sciences [QYZDB-SSWSMC049]
  3. Youth Innovation Promotion Association CAS
  4. Chinese Academy of Sciences-Peking University Pioneer Collaboration Team
  5. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA19070303]

向作者/读者索取更多资源

Emissions of nitrous oxide (N2O) contribute to global warming and stratospheric ozone depletion. Anthropogenic N2O emissions predominately result from the addition of synthetic nitrogen (N) fertilizers to terrestrial ecosystems. Usually, an exponential increase in N2O emissions occurs as N addition rates increase to exceed plant demands. However, most evidence to date is from temperate areas, with little information available for alpine ecosystems. Here we examined the changes in N2O flux under eight N addition levels and the mechanisms regulating these changes in a Tibetan alpine steppe. Our results showed that N2O emission rate increased linearly with increasing N additions. Even when soil N availability exceeded plant N uptake, no sharp N2O emissions were observed. The likely explanation was that decreased soil temperature limited the growth of nitrification-related microorganisms, mainly ammonia-oxidizing archaea, which further attenuated the positive response of N2O emissions to excess N supply. These findings suggest that the N-induced changes in soil temperature regulate the growth of nitrifying microorganisms and the subsequent N2O fluxes in this alpine steppe, and the exponential N2O emission-N rate relationship observed in warm regions may not be simply extrapolated to alpine ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据