4.6 Article

Background conditions influence the decadal climate response to strong volcanic eruptions

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
卷 118, 期 10, 页码 4090-4106

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/jgrd.50229

关键词

Volcanic forcing; Decadal climate response; Background climate conditions; Simulation ensemble; Atlantic meridional overturning circulation; Tambora

资金

  1. Federal Ministry for Education and Research in Germany (BMBF) [FKZ:01LP1158A, 01LP1130A]
  2. European Union [212643]
  3. Cluster of Excellence CliSAP, University of Hamburg
  4. German Science Foundation (DFG)
  5. DFG
  6. EU/FP7 project ACQWA [NO212250]

向作者/读者索取更多资源

Background conditions have the potential to influence the climate response to strong tropical volcanic eruptions. As a case study, we systematically assess the decadal climate response to the April 1815 Tambora eruption in a set of full-complexity Earth system model simulations. Three 10-member simulation ensembles are evaluated which describe the climate evolution of the early 19th century under (1) full-forcing conditions, (2) volcanic forcing-only conditions, and (3) volcanic forcing-only conditions excluding events preceding the Tambora eruption. The amplitude of the simulated radiative perturbation induced by the Tambora eruption depends only marginally on the background conditions. In contrast, simulated near-surface atmospheric and especially oceanic dynamics evolve significantly differently after the eruption under different background conditions. In particular, large inter-ensemble differences are found in the post-Tambora decadal evolution of oceanic heat transport and sea ice in the North Atlantic/Arctic Ocean. They reveal the existence of multiple response pathways that depend on background conditions. Background conditions are therefore not merely a source of additive noise for post-eruption decadal climate variability but actively influence the mechanisms involved in the post-eruption decadal evolution. Hence, background conditions should appropriately be accounted for in future ensemble-based numerical studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据