4.6 Article

Top-down isoprene emissions over tropical South America inferred from SCIAMACHY and OMI formaldehyde columns

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
卷 118, 期 12, 页码 6849-6868

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/jgrd.50552

关键词

Amazon; isoprene; formaldehyde; SCIAMACHY; OMI; GEOS-Chem

资金

  1. Natural Environment Research Council [NE/GE013810/2]
  2. Swedish Research Council Formas
  3. NERC [NE/G013810/2] Funding Source: UKRI
  4. Natural Environment Research Council [NE/G013810/2] Funding Source: researchfish

向作者/读者索取更多资源

We use formaldehyde (HCHO) vertical column measurements from the Scanning Imaging Absorption spectrometer for Atmospheric Chartography (SCIAMACHY) and Ozone Monitoring Instrument (OMI), and a nested-grid version of the GEOS-Chem chemistry transport model, to infer an ensemble of top-down isoprene emission estimates from tropical South America during 2006, using different model configurations and assumptions in the HCHO air-mass factor (AMF) calculation. Scenes affected by biomass burning are removed on a daily basis using fire count observations, and we use the local model sensitivity to identify locations where the impact of spatial smearing is small, though this comprises spatial coverage over the region. We find that the use of the HCHO column data more tightly constrains the ensemble isoprene emission range from 27-61TgC to 31-38TgC for SCIAMACHY, and 45-104TgC to 28-38TgC for OMI. Median uncertainties of the top-down emissions are about 60-260% for SCIAMACHY, and 10-90% for OMI. We find that the inferred emissions are most sensitive to uncertainties in cloud fraction and cloud top pressure (differences of +/- 10%), the a priori isoprene emissions (+/- 20%), and the HCHO vertical column retrieval (+/- 30%). Construction of continuous top-down emission maps generally improves GEOS-Chem's simulation of HCHO columns over the region, with respect to both the SCIAMACHY and OMI data. However, if local time top-down emissions are scaled to monthly mean values, the annual emission inferred from SCIAMACHY are nearly twice those from OMI. This difference cannot be explained by the different sampling of the sensors or uncertainties in the AMF calculation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据