4.5 Article

Hydrology of early Mars: Valley network incision

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
卷 118, 期 6, 页码 1365-1387

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/jgre.20081

关键词

Mars; hydrology; valley networks; paleoclimate

资金

  1. NASA

向作者/读者索取更多资源

Widespread occurrences of valley networks on Mars provide geomorphic evidence for an active hydrologic cycle. To constrain the climatic conditions capable of forming the valley networks, a hydrological model was used to analyze the valley incision depth and volume of eroded valleys. Because the absolute magnitudes of precipitation, runoff, and evaporation are uncertain, we have used the ratio of these quantities (the X-ratio) to express climatic conditions. The spatial distribution and strength of the correlations between (1) the estimated depth and volume of eroded material and (2) estimated flood magnitude and valley gradients were investigated as a function of the assumed X-ratio. We also conducted an analysis of conditions required to have appreciable discharge in selected valley networks, which provided the most definitive constraint on Martian paleoclimate. The other methods show a relatively weak dependency of incision depths and volumes upon the assumed X-ratio. The multiple regression analyses indicate that incision depth is strongly influenced by gradient and weakly related to modeled flood discharge. The factors determining relative depth of incision depend partly on the type of channel bed. However, postflow modification of the valley networks by mass wasting, cratering, aeolian infilling, and ice-related processes precludes direct determination of bed morphology. Our hydrological analyses suggest that climatic conditions on early Mars were at least as moist as those that occurred in the Great Basin region of the U.S. when large lakes were present during the Pleistocene in terms of the balance of runoff and lake evaporation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据