4.7 Article

Provable compressed sensing quantum state tomography via non-convex methods

期刊

NPJ QUANTUM INFORMATION
卷 4, 期 -, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41534-018-0080-4

关键词

-

资金

  1. IBM Goldstine Fellowship
  2. DoD

向作者/读者索取更多资源

With nowadays steadily growing quantum processors, it is required to develop new quantum tomography tools that are tailored for high-dimensional systems. In this work, we describe such a computational tool, based on recent ideas from non-convex optimization. The algorithm excels in the compressed sensing setting, where only a few data points are measured from a low-rank or highly-pure quantum state of a high-dimensional system. We show that the algorithm can practically be used in quantum tomography problems that are beyond the reach of convex solvers, and, moreover, is faster and more accurate than other state-of-the-art non-convex approaches. Crucially, we prove that, despite being a non-convex program, under mild conditions, the algorithm is guaranteed to converge to the global minimum of the quantum state tomography problem; thus, it constitutes a provable quantum state tomography protocol.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据