4.7 Article

Towards Pneumatic Spiral Grippers: Modeling and Design Considerations

期刊

SOFT ROBOTICS
卷 5, 期 6, 页码 695-709

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/soro.2017.0144

关键词

fiber reinforced actuators; spiral gripping; Cosserat rods; modeling

类别

资金

  1. NSF [CMMI-1454276]

向作者/读者索取更多资源

There are a number of instances in nature where long and slender objects are grasped by a continuum arm spirally twirling around the object, thereby increasing the area of contact and stability between the gripper and the object. This paper investigates the design and modeling of spiral grippers using pneumatic fiber-reinforced actuators. The paper proposes two reduced order models, a pure helical model, and a spatial Cosserat rod model to capture the deformed behavior of the gripper using the mechanics of fiber-reinforced actuators in the presence of self-weight. While the former model can yield closed form expressions that aid in design, the deformation parameters deviate by greater than 40% of its length for actuators longer than 200 mm. However, the Cosserat rod model deviates by less than 8% of its length for two different prototypes validated in this work. The deformation of the gripper is then correlated to the number of spiral turns achievable about the object, which determines the quality of the grip. Together, they enable a systematic framework where the gripper parameters can be designed for a given range of object sizes to be handled. This framework is experimentally validated by successful gripping of a range of slender objects that lie between a 20mm diameter tubelight and a 60 mm diameter PVC pipe.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据