4.7 Article

Absence of manganese superoxide dismutase delays p53-induced tumor formation

期刊

REDOX BIOLOGY
卷 2, 期 -, 页码 220-223

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.redox.2014.01.001

关键词

Anti-oxidant; Pro-oxidant; Cancer; Oxidative stress; Redox

资金

  1. NIH [R01 CA114538]

向作者/读者索取更多资源

Background: Manganese superoxide dismutase (MnSOD) is a mitochondrial antioxidant enzyme that is down-regulated in a majority of cancers. Due to this observation, as well as MnSOD's potent antioxidant enzymatic activity, MnSOD has been suggested as a tumor suppressor for over 30 years. However, testing this postulate has proven difficult due to the early post-natal lethality of the MnSOD constitutive knockout mouse. We have previously used a conditional tissue-specific MnSOD knock-out mouse to study the effects of MnSOD loss on the development of various cell types, but long-term cancer development studies have not been performed. We hypothesized the complete loss of MnSOD would significantly increase the rate of tumor formation in a tissue-specific manner. Results: Utilizing a hematopoietic stem cell specific Cre-recombinase mouse model, we created pan-hematopoietic cell MnSOD knock-out mice. Additionally, we combined this MnSOD knock-out with two well established models of lymphoma development: B-lymphocyte specific Myc over-expression and conditional pan-hematopoietic cell p53 knock-out. Mice were allowed to age unchallenged until illness or death had occurred. Contrary to our initial hypothesis, the loss of MnSOD alone was insufficient in causing an increase in tumor formation, but did cause significant life-shortening skin pathology in a strain dependent manner. Moreover, the loss of MnSOD in conjunction with either Myc overexpression or p53 knock out did not accelerate tumor formation, and in fact delayed lymphomagenesis in the p53 knock out model. Conclusions: Our findings strongly suggest that MnSOD does not act as a classical tumor suppressor in hematological tissues. Additionally, the complete loss of MnSOD may actually protect from tumor development by the creation of an unfavorable redox environment for tumor progression. In summary, these results in combination with our previous work suggest that MnSOD needs to be tightly regulated for proper cellular homeostasis, and altering the activity in either direction may lead to cellular dysfunction, oncogencsis, or death. (C) 2014 The Authors. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据