4.1 Article

Structural, electrical transport and optical studies of Li ion doped ZnO nanostructures

期刊

出版社

UNIV NOVI SAD, FAC TECHNOLOGY
DOI: 10.2298/PAC1401007R

关键词

ZnO nanostructures; photoluminescence; cyan emission; Burstein-Moss shift

资金

  1. University of Madras

向作者/读者索取更多资源

In the present work, we studied the morphological aspects, electrical transport and optical properties of pure and lithium ion doped semiconducting ZnO nanostructures successfully prepared by a co-precipitation method. The effect of lithium doping and various morphologies on the structural, electrical and optical properties of these nanostructures were investigated. The X-ray diffraction (XRD) pattern demonstrated that the Li doped ZnO nanostructures exhibits the hexagonal wurtzite structure. A slight change in the 101 peak position was detected among the samples with various morphologies. The UV-Vis diffused reflectance spectroscopic (DRS) studies showed that the band gap increases with Li doping, due to the Burstein-Moss band filling effect. Photoluminescence (PL) studies confirm that the Li incorporation into ZnO material can induce oxygen enrichment of ZnO surface that leads to increase the cyan emission. This material could be used in light emitting diodes in nanoscale optoelectronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据