4.7 Article

Computational complex optical field imaging using a designed metasurface diffuser

期刊

OPTICA
卷 5, 期 8, 页码 924-931

出版社

OPTICAL SOC AMER
DOI: 10.1364/OPTICA.5.000924

关键词

-

类别

资金

  1. Caltech Innovation Initiative

向作者/读者索取更多资源

Various speckle-based computational imaging techniques that exploit the ability of scattering media to transfer hidden information into the speckle pattern have recently been demonstrated. Current implementations suffer from several drawbacks associated with the use of conventional scattering media (CSM), such as their time-consuming characterization, instability with time, and limited memory-effect range. Here we show that by using a random dielectric metasurface diffuser (MD) with known scattering properties, many of these issues can be addressed. We experimentally demonstrate an imaging system with the ability to retrieve complex field values using a MD and the specklecorrelation scattering matrix method. We explore the mathematical properties of the MD transmission matrix such as its correlation and singular value spectrum to expand the understanding about both MDs and the speckle-correlation scattering matrix approach. In addition to a large noise tolerance, reliable reproducibility, and robustness against misalignments, using the MD allows us to substitute the laborious experimental characterization procedure of the CSM with a simple simulation process. Moreover, dielectric MDs with identical scattering properties can easily be mass-produced, thus enabling real-world applications. Representing a bridge between metasurface optics and speckle-based computational imaging, this work paves the way to extending the potentials of diverse speckle-based computational imaging methods for various applications such as biomedical imaging, holography, and optical encryption. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据