4.3 Article

The N550K/H Mutations in FGFR2 Confer Differential Resistance to PD173074, Dovitinib, and Ponatinib ATP-Competitive Inhibitors

期刊

NEOPLASIA
卷 15, 期 8, 页码 975-+

出版社

ELSEVIER SCIENCE INC
DOI: 10.1593/neo.121106

关键词

-

类别

资金

  1. Sylvia Chase Postdoctoral Fellowship
  2. American Cancer Society Postdoctoral Fellowship [PF-07-215-01-TBE]
  3. National Institutes of Health (NIH) [R01 DE13686, P30 CA016087]
  4. 100 Women in Hedge Funds Foundation
  5. QUT Vice Chancellors Fellowship
  6. National Health and Medical Research Council CDF2

向作者/读者索取更多资源

We sought to identify fibroblast growth factor receptor 2 (FGFR2) kinase domain mutations that confer resistance to the pan-FGFR inhibitor, dovitinib, and explore the mechanism of action of the drug-resistant mutations. We cultured BaF3 cells overexpressing FGFR2 in high concentrations of dovitinib and identified 14 dovitinib-resistant mutations, including the N550K mutation observed in 25% of FGFR2(mutant) endometrial cancers (ECs). Structural and biochemical in vitro kinase analyses, together with BaF3 proliferation assays, showed that the resistance mutations elevate the intrinsic kinase activity of FGFR2. BaF3 lines were used to assess the ability of each mutation to confer cross-resistance to PD173074 and ponatinib. Unlike PD173074, ponatinib effectively inhibited all the dovitinib-resistant FGFR2 mutants except the V565I gatekeeper mutation, suggesting ponatinib but not dovitinib targets the active conformation of FGFR2 kinase. EC cell lines expressing wild-type FGFR2 were relatively resistant to all inhibitors, whereas EC cell lines expressing mutated FGFR2 showed differential sensitivity. Within the FGFR2(mutant) cell lines, three of seven showed marked resistance to PD173074 and relative resistance to dovitinib and ponatinib. This suggests that alternative mechanisms distinct from kinase domain mutations are responsible for intrinsic resistance in these three EC lines. Finally, overexpression of FGFR2(N550K) in JHUEM-2 cells (FGFR2(C383R)) conferred resistance (about five-fold) to PD173074, providing independent data that FGFR2(N550K) can be associated with drug resistance. Biochemical in vitro kinase analyses also show that ponatinib is more effective than dovitinib at inhibiting FGFR2(N550K). We propose that tumors harboring mutationally activated FGFRs should be treated with FGFR inhibitors that specifically bind the active kinase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据