4.3 Article

The Brain Microenvironment Preferentially Enhances the Radioresistance of CD133+ Glioblastoma Stem-like Cells

期刊

NEOPLASIA
卷 14, 期 2, 页码 150-158

出版社

NEOPLASIA PRESS
DOI: 10.1593/neo.111794

关键词

-

类别

向作者/读者索取更多资源

Brain tumor xenografts initiated from glioblastoma (GBM) CD133(+) tumor stem-like cells (TSCs) are composed of TSC and non-TSC subpopulations, simulating the phenotypic heterogeneity of GBMs in situ. Given that the discrepancies between the radiosensitivity of GBM cells in vitro and the treatment response of patients suggest a role for the microenvironment in GBM radioresistance, we compared the response of TSCs and non-TSCs irradiated under in vitro and orthotopic conditions. As a measure of radioresponse determined at the individual cell level, gamma.H2AX and 53BP1 foci were quantified in CD133(+) cells and their differentiated (CD133(-)) progeny. Under in vitro conditions, no difference was detected between CD133(+) and CD133(-) cells in foci induction or dispersal after irradiation. However, irradiation of orthotopic xenografts initiated from TSCs resulted in the induction of fewer gamma H2AX and 53BP1 foci in CD133(+) cells compared to their CD133(-) counterparts within the same tumor. Xenograft irradiation resulted in a tumor growth delay of approximately 7 days with a corresponding increase in the percentage of CD133(+) cells at 7 days after radiation, which persisted to the onset of neurologic symptoms. These results suggest that, although the radioresponse of TSCs and non-TSCs does not differ under in vitro growth conditions, CD133(+) cells are relatively radioresistant under intracerebral growth conditions. Whereas these findings are consistent with the suspected role for TSCs as a determinant of GBM radioresistance, these data also illustrate the dependence of the cellular radioresistance on the brain microenvironment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据