4.3 Article

Labeling of Oxidizable Proteins with a Photoactivatable Analog of the Antitumor Agent DMXAA: Evidence for Redox Signaling in Its Mode of Action

期刊

NEOPLASIA
卷 12, 期 9, 页码 755-U96

出版社

ELSEVIER SCIENCE INC
DOI: 10.1593/neo.10636

关键词

-

类别

资金

  1. Health Research Council of New Zealand
  2. National Institutes of Health [AI-18797]

向作者/读者索取更多资源

The signaling pathway(s) and molecular target(s) for 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a tumor vascular-disrupting agent in late stages of clinical development, are still undefined. As an approach toward identifying potential targets for DMXAA, a tritiated azido-analog of DMXAA was used to probe for cellular binding proteins. More than 20 cytosolic proteins from murine splenocytes, RAW 264.7 cells, and the HECPP immortalized endothelial cells were photoaffinity-labeled. Although no protein domain, fold, or binding site for a specific ligand was found to be shared by all the candidate proteins, essentially all were noted to be oxidizable proteins, implicating a role for redox signaling in the action of DMXAA. Consistent with this hypothesis, DMXAA caused an increase in concentrations of reactive oxygen species (ROS) in RAW 264.7 cells during the first 2 hours. This increase in ROS was suppressed in the presence of the antioxidant, N-acetyl-L-cysteine, which also suppressed DMXAA-induced cytokine production in the RAW 264.7 cells with no effects on cell viability. Short interfering RNA (siRNA)-mediated knockdown of one of the photoaffinity-labeled proteins, superoxide dismutase 1, an ROS scavenger, resulted in an increase in tumor necrosis factor-alpha production by RAW 264.7 cells in response to DMXAA compared with negative or positive controls transfected with nontargeting or lamin A/C-targeting siRNA molecules, respectively. The results from these lines of study all suggest that redox signaling plays a central role in cytokine induction by DMXAA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据