4.4 Article

Fluid Flow and Heat Transfer in a Novel Microchannel Heat Sink Partially Filled With Metal Foam Medium

出版社

ASME
DOI: 10.1115/1.4025823

关键词

copper foams; microchannel; thermal resistance; temperature

向作者/读者索取更多资源

Performance of microchannel heatsink (MCHS) partially filled with foam is investigated numerically. The open cell copper foams have the porosity and pore density in the ranges of 60-90% and 60-100 PPI (pore per inch), respectively. The three-dimensional steady, laminar flow, and heat transfer governing equations are solved using finite volume method. The performance of microchannel heatsink is evaluated in terms of overall thermal resistance, pressure drop, and heat transfer coefficient and temperature distribution. It is found that the results of the surface temperature profile are in good agreement with numerical data. The results show the microchannel heatsink with insert foam appears to be good candidates as the next generation of cooling devices for high power electronic devices. The thermal resistance for all cases decreases with the decrease in porosity. The uniformity of temperature in this heatsink is enhanced compared the heatsink with no foam. The thermal resistance versus the pumping power is depicted, it is found that 80% is the optimal porosity for the foam at 60 PPI with a minimum thermal resistance 0.346 K/W. The results demonstrate the microchannel heatsink partially filled with foam is capable for removing heat generation 100 watt over an area of 9 x 10(-6) m(2) with the temperature of heat flux surface up to 59 degrees C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据