4.4 Article

Recent Advances in High-Flux, Two-Phase Thermal Management

出版社

ASME
DOI: 10.1115/1.4023599

关键词

-

向作者/读者索取更多资源

Recent developments in applications such as computer data centers, electric vehicle power electronics, avionics, radars, and lasers have led to alarming increases in heat dissipation rate, which now far exceeds the capability of air cooling schemes and even the most aggressive single-phase liquid cooling schemes. This trend is responsible for a recent transition to two-phase cooling, which capitalizes upon the coolant's latent heat rather than sensible heat alone to achieve several order-of-magnitude increases in heat transfer coefficient. Three two-phase cooling configurations have surfaced as best contenders for the most demanding applications: mini/microchannel, jet, and spray. This study will explore the implementation of these configurations into practical cooling packages, assess available predictive tools, and identify future research needs for each. It is shown that the design and performance assessment of high-flux, two-phase cooling systems are highly dependent on empirical or semiempirical predictive tools and, to a far lesser extent, theoretical mechanistic models. A major challenge in using such tools is the lack of databases for coolants with drastically different thermophysical properties, and which cover broad ranges of such important parameters as flow passage size, mass velocity, quality, and pressure. Recommendations are therefore made for future research to correct any critical knowledge gaps, including the need for robust computer algorithms. Also discussed is a new class of hybrid cooling schemes that capitalize upon the merits of multiple cooling configurations. It is shown that these hybrid schemes not only surpass the basic cooling configurations in heat dissipation rate, but they also provide better surface temperature uniformity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据